skip to main content


Search for: All records

Creators/Authors contains: "Parker, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Continental fold‐thrust belts display a variety of structural styles, ranging from thin‐skinned thrusts following weak lithologic contacts to thick‐skinned thrusts that deform mechanical basement. The common practice of splitting fold‐thrust belts into thin‐skinned and thick‐skinned map domains has not yielded a predictive model of the primary controls on structural style. Within the Mesozoic‐Paleogene Idaho‐Montana fold‐thrust belt (44°N‐45°N, 112°W‐114°W), we identify crosscutting thin‐skinned and thick‐skinned thrusts within an otherwise thin‐skinned map domain. This transition occurs within a thin (∼2.5 km) portion of the western Laurentian passive margin, where lower strata pinch out over a prominent basement high (Lemhi arch). Early fold‐thrust belt shortening of sedimentary cover rocks was accommodated through detachment folding, followed by east‐directed, thin‐skinned thrusting along regional‐scale faults (Thompson Gulch and Railroad Canyon thrusts). Later, basement and cover rocks were tilted toward the southeast and a basement‐involved normal fault was reactivated during thick‐skinned thrusting (Radio Tower‐Baby Joe Gulch‐Italian Gulch thrusts), which accommodated shortening at an oblique angle to and truncated the basal detachment of the older thin‐skinned thrusts. This progression from thin‐skinned to thick‐skinned thrusting occurred >50 km from the foreland, coincident with a regional basement high. Thus, the Idaho‐Montana fold‐thrust belt is a double‐decker system, with upper thin‐skinned and lower thick‐skinned domains. This double‐decker model is applicable to other fold‐thrust belts and predicts that the transition from thin‐skinned to thick‐skinned thrusting occurs where the growing critically tapered wedge can no longer fit within the sedimentary cover rocks and the basal detachment steps down into the structurally lower mechanical basement.

     
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    We present optical and near-infrared broadband photometry and optical spectra of AT 2014ej from the Carnegie Supernova Project-II. These observations are complemented with data from the CHilean Automatic Supernova sEarch, the Public ESO Spectroscopic Survey of Transient Objects, and from the Backyard Observatory Supernova Search. Observational signatures of AT 2014ej reveal that it is similar to other members of the gap-transient subclass known as luminous red novae (LRNe), including the ubiquitous double-hump light curve and spectral properties similar to that of LRN SN 2017jfs. A medium-dispersion visual-wavelength spectrum of AT 2014ej taken with the Magellan Clay telescope exhibits a P Cygni H α feature characterized by a blue velocity at zero intensity of ≈110 km s −1 and a P Cygni minimum velocity of ≈70 km s −1 . We attribute this to emission from a circumstellar wind. Inspection of pre-outbust Hubble Space Telescope images yields no conclusive progenitor detection. In comparison with a sample of LRNe from the literature, AT 2014ej lies at the brighter end of the luminosity distribution. Comparison of the ultra-violet, optical, infrared light curves of well-observed LRNe to common-envelope evolution models from the literature indicates that the models underpredict the luminosity of the comparison sample at all phases and also produce inconsistent timescales of the secondary peak. Future efforts to model LRNe should expand upon the current parameter space we explore here and therefore may consider more massive systems and a wider range of dynamical timescales. 
    more » « less